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Abstract: A competitive implicit finite-di ference method for the numerical solution of an avian influenz model
is constructed. The proposed numerical schemes have two fi ed points which are identical to the critical points
of the continuous model and it is shown that they have the same stability properties. It is shown further that the
solution sequence is attracted from any set of initial conditions to the correct (stable) fi ed point for an arbitrarily
large time step. Numerical Simulations are confirme and compared with well-known numerical methods.
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1 Introduction

Bird fl or avian influenza caused by H5N1 virus, is a
new emerging infectious disease. The world has been
experiencing a relentless spread of bird fl due to im-
portation of chicken birds as they move around the
world to seasonal breeding and feeding grounds, in-
fecting domestic flock around the world. More than
150 million birds, mostly chickens, have died or has
been culled. Sixty-three out of 124 infected humans
have died since December 2003 [28]. Many methods
such that hunting and isolation have been taken to con-
trol the spread of avian influenza However, it is ob-
served that poultry without any symptom can excrete
much highly pathogenic virus, which makes it more
difficul to inhibit the H5N1 type virus from spread-
ing.

Many problems in mathematical epidemiology
are modelled by autonomous systems of nonlinear or-
dinary differential equations, which implies the as-
sumption that the parameters of the model are inde-
pendent of time. These models describe the behavior
and relationship between the different subpopulations:
susceptible, infective and recovered, which together
constitute the total population of a certain region or
environment. Generally, the exact solutions of these
models are unavailable being necessary to obtain ac-
curate numerical approximations to the solutions in
order to understand the dynamics of the systems. A
number of deterministic models have been reported
in the literature for avian influenz transmission dy-
namics (see, for instance, [2, 3, 6, 5, 16, 17, 23, 29])
while Iwami S, Takeuchi Y, Liu X. [16] investi-
gated a mathematical model to explain the spread of

avian influenz and mutant avian influenza Derouich
and Boutayeb [5] presented a mathematical model
that deals with the dynamics of human infection by
avian influenz both in birds and in humans. Ye
and Li [29] developed an avian fl model based on
the standard SEIQ model including constant immi-
gration of latent class and an additional property of
the avian influenza namely that the asymptomatic in-
dividuals in the latent period have infectious force.
The stochastic models were proposed to model and
predict the worldwide spread of pandemic influenz
[3]. Rao et al. [23] developed a groundbreaking
methodology based on computer simulations to an-
alyze the spread of H5N1 using stochastic interac-
tions between waterfowl, poultry, and humans. These
studies, however, gave no details on the numerical
method(s) used to solve the resulting nonlinear initial-
value problems(IVPS). Therefore one important task
of the mathematical modelling is to obtain accurate
numerical solutions.

It is worth mentioning that discretizing the or-
dinary differential equations (ODEs) of the model
by traditional schemes like Euler and Runge-Kutta
methods can result in contrived chaos and oscilla-
tions for certain values of the discretization parame-
ters [8, 9, 11, 12, 21, 22], moreover some methods,
despite using adaptative step size, still fail (see [19]).
Although such scheme-dependent numerical instabil-
ities can often be avoided by using small time-steps,
the extra computing cost incurred when examining
the long-term behaviour of a dynamical system may
be substantial. It is, therefore, essential to use a nu-
merical method which allows the largest possible time
steps that are consistent with stability and accuracy. In
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order to circumvent contrived chaos, whilst retaining
accuracy and numerical stability, it may be necessary
to forego the ease-of-implementation of inexpensive
explicit numerical methods in favour of implicit meth-
ods (which are known to be more competitive in terms
of numerical stability).

The purpose of the current study is to construct
a competitive implicit method for solving a simple
mathematical model of avian influenz transmission
proposed in [5]. The paper is organized as follows.
The governing continuous-time model for the evolu-
tion of avian influenz disease in human population is
given in Section 2. The stability of this model is an-
alyzed in Section 2.1. The construction of proposed
numerical schemes is carried out in Section 3 and its
fi ed point analyzed in section 4. Numerical results in
several situations are reported in section 5.

2 Mathematical model
The model presented in [5] for the transmission of
avian influenz using SIRS model for human popu-
lation and SI model for bird population are expressed
as the nonlinear system of differential equations of the
form
Human population

S′
h(t) = Λ−

(

μ+
βIv
Nv

)

Sh + δRh,

I ′h(t) =
βIvSh
Nv

− (μ+ γ + α) Ih, (1)

R′
h(t) = γIh − (μ+ δ)Rh,

Bird population

S′
v(t) = μ0Nv −

(

μ0 +
β0Iv
Nv

)

Sv,

I ′v(t) =
β0IvSv
Nv

− μ0Iv. (2)

In (1)-(2), the variables Sh, Ih, Rh, Sv, and Iv denote
the populations of susceptible humans, infectious hu-
mans, recovered humans, infectious birds and recov-
ered birds at time t, so that the total population of hu-
man and bird at time t are given byNh = Sh+Ih+Rh

andNv = Sv+Iv, respectively. Furthermore, Λ is the
recruitment of humans into the population (assumed
susceptible), β is the infection rate of susceptible hu-
mans (which results following effective contact with
infectious birds) and μ is the natural death rate of hu-
mans. Infectious humans recover (and move into the
Rh class) at a rate γ and suffer disease-induced death
at a rate αh. The recovered humans population loss
their immunity (so that they acquire avian influenz
infection again) and move to the Sh class at a rate σ.

The susceptible birds population is generated by
birth at a rate μ0. This population is reduced by infec-
tion, following effective contact with infectious birds,
at the rate β0 and natural death at a rate μ0. Since the
above model monitors human and bird populations,
all the associated parameters and state variables are
non-negative.

For simplicity, set the new variables

sh =
Sh
Λ/μ

, ih =
Ih
Λ/μ

, rh =
Rh

Λ/μ
, sv =

Sv
Nv

, iv =
Iv
Nv

,

the total human and bird populations are normalized
to unity so that sh + ih + rh = nh and sv = 1 − iv.
The system (1)-(2), thus, is reduced to the non-linear
IVP system

dsh
dt

≡ f1 = μ− (μ+ βiv)sh + δrh, sh(0) = s0h

dih
dt

≡ f2 = βivsh − (μ+ γ + α)ih, ih(0) = i0h

drh
dt

≡ f3 = γih − (μ+ δ)rh, rh(0) = r0h

div
dt

≡ f4 = β0iv(1− iv)− μ0iv, iv(0) = i0v.

(3)

2.1 Stability Analysis
The steady-states of the IVP (3) are determined when
the time derivatives vanish giving: the trivial critical
point (no infected populations), E1 = (1, 0, 0, 0) and
the non-trivial critical point, E2(sh, ih, rh, iv), with

sh =
(μ+ γ + α)ih

βiv
, ih =

μβ(μ+ δ)iv

βω1iv + ω2
,

rh =
γih
μ+ δ

, iv =
μ0
β0

(R̃− 1),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4)

where ω1 = μ(μ + γ + α) + δ(μ + α), ω2 = μ(μ +

δ)(μ + α + γ) and R̃ = β0/μ0. It follows from (4)
that the system (3) has a unique positive solution when
R̃ > 1.

A critical point is said to be stable if the eigen-
values of the Jacobian evaluated at the critical point,
are real and negative or are complex with negative real
parts. It is easy to show that the Jacobian associated
with f1, f2, f3 and f4 given in (3) is the matrix

J =

⎡

⎢

⎢

⎣

βiv − μ 0 δ −βsh
βiv −k2 0 βsh
0 γ −k1 0
0 0 0 a33

⎤

⎥

⎥

⎦

,
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where k1 = μ + δ, k2 = μ + γ + α and a33 =
β0(1− iv)−β0iv−μ0, the determinant of which van-
ishes when R̃ = β0/μ0 = 1. This unique value will
be regarded as a bifurcation parameter of the model
equations.

At the trivial critical point sh = 1, ih = rh =
iv = 0, the eigenvalues λi, i = 1, 2, 3, 4 of the associ-
ated Jacobian are

λ1 = −μ0(1− R̃), λ2 = −μ, λ3 = −k1, λ4 = −k2,

which it follows that all four eigenvalues are real and
negative whenever R̃ < 1. On the other hand, one is
positive if R̃ > 1. It may be concluded, therefore, that
the trivial critical point is stable whenever R̃ < 1 and
unstable whenever R̃ > 1.

At the non-trivial critical point E2, it may be
shown that λ1 = −μ0(R̃ − 1) and the other eigen-
values of the associated Jacobian are the roots of the
characteristic equation

λ3 + pλ2 + qλ+ r = 0, (5)

where

p = βiv + k1 + k2 + μ,

q = (βiv + μ)(k1 + k2) + μk1k2

r = βiv(k1α+ k2μ) + μk1k2.

It is clear that p, q, r are always positive whenever
R̃ > 1. Using Routh-Hurwitz criterion, the equation
(5) has all negative real part when R̃ > 1 and has
exactly one positive real root when R̃ < 1. It may
be concluded, therefore, that the non-trivial critical
point is stable whenever R̃ > 1 and unstable when-
ever R̃ < 1. Moreover, the equation (5) has a zero
eigenvalue when R̃ = 1 and then the non-trivial criti-
cal point coincides with the trivial critical point which
is neutrally stable.

3 Development of the numerical
method

The time variable t ≥ 0 will be discretized at the
points tn = n	(n = 0, 1, 2, . . .) where 	 > 0 is a
constant time step. The solutions of the model (3) at
the point tn are sh(tn), ih(tn), rh(tn) and iv(tn). The
solutions of the numerical method at the same point tn
will be denoted by snh, i

n
h, r

n
h and i

n
v , respectively. The

development of the numerical method will be based
on the first-orde approximations

dX

dt
=
X(t+ 	)−X(t)

	
+O(	) as 	→ 0, (6)

in which t = tn. Approximating the derivatives in (3)
by (6), and evaluating the variables on the right-hand
sides of (3) as follows: for n = 0, 1, 2, . . .,

sn+1
h − snh

	
= μ− (μ+ βinv )s

n+1
h + δrnh ,

in+1
h − inh

	
= βinvs

n
h − k2i

n+1
h ,

rn+1
h − rnh

	
= γinh − k1r

n+1
h ,

in+1
v − inv

	
= β0i

n
v − (β0i

n
v + μ0)i

n+1
v ,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(7)

gives, after re-arranging,

sn+1
h ≡ g1 =

snh + 	(μ+ δrnh)

1 + 	(μ+ βinv )
,

in+1
h ≡ g2 =

inh + 	βsnhi
n
v

1 + 	k2
,

rn+1
h ≡ g3 =

rnh + 	γinh
1 + 	k1

,

in+1
v ≡ g4 =

inv + 	β0i
n
v

1 + 	(β0inv + μ0)
,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(8)

This method (8) is denoted as method NFD.
The local truncation errors LX ≡

LX [sh(t), ih(t), rh(t), iv(t); 	] of (8), in which
t = tn, may be derived from (7), and are given by

Lsh = sh(t+ 	)− sh(t)− 	μ− 	δrh(t)

+	(μ+ βiv(t))sh(t+ 	)

Lih = ih(t+ 	)− ih(t)− 	βiv(t)sh(t)

+	k2ih(t+ 	),

Lrh = rh(t+ 	)− rh(t)− 	γih(t)

+	k1rh(t+ 	),

Liv = iv(t+ 	)− iv(t)− 	β0iv(t)

+	(β0iv(t) + μ0)iv(t+ 	),

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(9)

Expanding sh(t+ 	), ih(t+ 	), rh(t+ 	) and iv(t+ 	)
as Taylor series about t in (9) lead to

Lsh =
(

1
2s

′′
h(t) + 	(μ+ βiv(t))s

′
h(t)

)

	2

+O(	3) as 	→ 0,

Lih =
(

1
2 i

′′
h(t) + 	k2i

′
h(t)

)

	2

+O(	3) as 	→ 0,

Lrh =
(

1
2r

′′
h(t) + 	k1r

′
h(t)

)

	2

+O(	3) as 	→ 0,

Liv =
(

1
2 i

′′
v(t) + 	(β0iv(t) + μ0)i

′
v(t)

)

	2

+O(	3) as 	→ 0,
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indicating that the method NFD (8) are first-orde ac-
curate (see, for instance, Lambert [12], pp. 56-57). It
should be noted that, although the first-orde method
NFD is implicit by construction, it enables the four
populations, sh, ih, rh and iv to be computed explic-
itly at every time step.

4 Fixed-point analysis
The aim here is to check whether the method FMD
consisting of (8), has the same stability property as
the original model (3). To do this, we firs consider
the associated equations

sh = g1(sh, ih, rh, iv), ih = g2(sh, ih, rh, iv),
rh = g3(sh, ih, rh, iv), iv = g4(sh, ih, rh, iv),

(10)

associated with the method NFD (8). It is easy to show
that the fi ed points of the method NFD are the equi-
libria of the ODE system (3), namely E1 and E2, and
it remains to establish the conditions under which the
method will converge to one of the fi ed/critical points
from the initial conditions s0h, i

0
h, r

0
h and i

0
v.

It is well known (see, for instance, Smith [25], pp.
268-269) that a system of the form (8) converges to a
fi ed point if and only if the spectral radius, ρ(J1), of
the Jacobian

J1(E) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂g1
∂sh

∂g1
∂ih

∂g1
∂rh

∂g1
∂iv

∂g2
∂sh

∂g2
∂ih

∂g2
∂rh

∂g2
∂iv

∂g3
∂sh

∂g3
∂ih

∂g3
∂rh

∂g3
∂iv

∂g4
∂sh

∂g4
∂ih

∂g4
∂rh

∂g4
∂iv

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (11)

evaluated at the fi ed point satisfie the condition
ρ(J1) < 1. The fi ed point is stable or attracting if
ρ(J1) < 1. The convergence properties of the method
NFD with 	 > 0 are established in the following the-
orem.

Theorem 1 If R̃ < 1, then the method NFD will con-
verge to the fixed point E1 for every 	 > 0.

Proof: The eigenvalues of the jacobian matrix J1
evaluated at the point E1(1, 0, 0, 0) are given by

λ1 =
1

1 + μ	
, λ2 =

1 + 	β0
1 + k2	

,

λ3 =
1

1 + k1	
, λ4 =

1 + β0	

1 + μ0	
.

It is seen that |λi| < 1 (i = 1, 2, 3) and |λ4| < 1 if
R̃ < 1 i.e. β0 < μ0. This implies that the stability of
the fi ed point E1 does not depend on the step-size,
	 (that is, the method NFD is unconditionally conver-
gent to E1 for all 	 provided R̃ < 1).

Theorem 2 If R̃ > 1, the method NFD will converge
to the non–trivial fixed point E2 for every 	 > 0.

Proof: The characteristic equation of the jacobian
matrix J1 evaluated at the point E2 is given by

(

λ− 1 + μ0	

1 + β0	

)

det(J2 − λI) = 0 (12)

where e1 = β0(1+μ	)+μ0β	(R̃−1), e2 = 1+k2	,
e3 = 1 + k1	 and

J2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β0
e1

0
δ	β0
e1

μ0β	(R̃− 1)

β0e2

1

e2
0

0
γ	

e3

1

e3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Clearly, from (12), one of the eigenvalues of J1(E2)

is λ1 =
1 + μ0	

1 + β0	
which is verifie that |λ1| < 1 if

β0 > μ0 or R̃ > 1. For the other eigenvalues we set
up

J2 =
1

e1e3
Q

where e1 = β0+μ	β0+β	μ0(R̃−1), e2 = 1+(μ+
γ + α)	, e3 = 1 + (μ+ δ)	 and Q is the matrix

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

β0e3 0 δ	β0e3

μ0β	(R̃− 1)e1e3
β0e2

e1e3
e2

0

0 γ	e1 e1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Next, we will show that if the eigenvalues
λ2, λ3, λ4 of the matrix Q satisfie condition

|λi| < e1e3, i = 2, 3, 4 (13)

then the eigenvalues λ2, λ3, λ4 of J satisfie ρ(J) <
1. A lot of algebraic manipulation revels that the char-
acteristic equation of Q takes the form

ψ(λ) = −λ3 + uλ2 − vλ+ w = 0 (14)
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where k3 = μβ0 + μ0β(R̃− 1),

u =
1

e2

(

β0k1k2 + (k1 + k2)k3

)

	2

+
1

e2

(

2 ((k1 + k2)β0 + k3) 	+ 3β0

)

,

v =
e1e3
e2

(

2 ((k1 + k2)β0 + k3) 	+ 3β0

)

,

w =
e21e

2
3

e2

(

γβδμ0	
3(R̃− 1) + β0

)

.

Clearly, u > 0, v > 0 and w > 0 whenever R̃ > 1. It
is easy to see that φ(0) = w > 0 and that φ = φ(λ)
is a strictly increasing function as λ → −∞ so that
φ(0) = 0 has no negative roots. Further algebraic
manipulation show that, when λ = e1e3,

ψ = −e
2
1e

2
3	

3μ0β(R̃− 1)((μ+ α)δ + μk1)

e2

−e
2
1e

2
3	

3μβ0k1k2
e2

;

that is φ(λ) < 0 at the point λ = e1e3 whenever R̃ >
1, so that φ(λ) has at least one real root between 0 and
e1e3 whenever R̃ > 1.

The function ψ(λ) has a minimum value when

λ = λ− =
u− (u2 − 3v)1/2

3
and a maximum value

when λ = λ+ =
u+ (u2 − 3v)1/2

3
. Clearly, 0 <

λ− < λ+ and the condition λ+ < e1e3 is satisfie
whenever y > 0, where

y = 9(e1e3)
2 − 6ue1e3 + 3v. (15)

Substituting for u and v in (15) gives,

y =
3e1e3	

2k3(3k1k2	+ μ+ α+ k2)

e2

+
3e1e3	

2β0(αk1 + μk2 + δγ)

e2

so that y > 0 whenever R̃ > 1. Thus, 0 < λ− <
λ+ < e1e3 and φ(λ) = 0 has no roots outside
the interval bounded by 0 and e1e3. It follows that
no eigenvalues of J2 exceed unity in modulus when-
ever R̃ > 1, irrespective of the size of the time step
	. It is implied that the numerical method (NFD)
will converge unconditionally from any starting val-
ues sh(0), ih(0), rh(0), iv(0) to the non-trivial fi ed
point E∗

2 whenever R̃ > 1. Therefore, we have estab-
lished the following theorem.

5 Numerical Experiments

5.1 Experiment 1: effect of time-step, �

To verify the convergence properties of the method
NFD (8), simulations are carried out with parame-
ter values: μ = 0.00004, β = 0.01, β0 = 0.035,
γ = 0.25, α = 0.002, δ = 0.1 and vary the value
μ0. The initial values are chosen for simulation pur-
poses: sh(0) = 0.5, ih(0) = 0.2, rh(0) = 0.06 and
iv(0) = 0.1. The results are compared with those
obtained using the standard forth–order Runge-Kutta
(RK4) method.

The effect of time-step on the two methods is
monitored by using various values of time-step 	 and
the threshold quantities are given the values R̃ =
0.8750 (μ0 = 0.04) and R̃ = 76.6500 (μ0 = 0.0004),
respectively, in the simulations. The results are tabu-
lated in Tables 1-2. It is found that the method NFD
(see (8)) has a much better stability property than the
RK4 method which failed when 	 ≥ 11.1 in case
R̃ < 1 and 	 ≥ 11.3 in case R̃ > 1, respectively.

Table 1: Convergence properties of RK4 and NFD
methods using various time-steps with μ0 = 0.04
(R0 = 0.8750 < 1)

Time step Numerical Methods
RK4 NFD

1 converge converge
3 converge converge
8.2 converge converge
11.1 diverge(method failed) converge
100 diverge converge
1000 diverge converge

Table 2: Convergence properties of RK4 and
NFD methods using various time-steps with μ0 =
0.0004(R0 = 76.6500 > 1)

Time step Numerical Methods
RK4 NFD

1 converge converge
3 converge converge
7 converge converge
8.1 converge converge
11.3 diverge(method failed) converge
100 diverge converge
1000 diverge converge
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The stability and convergence properties of the
method NFD and the RK4 method are investigated.
It is found that the method NFD does not give chaotic
results and seems to always give numerical results that
converge to the correct steady-state solutions, E1 and
E2 regardless of the size of the step-size used in the
simulations, see Figs. 1-2 and Fig. 3(b). On the other
hand, the RK4 behaves well for small step-sizes (Ta-
ble 2) but exhibits scheme-dependent instabilities (di-
vergent) when relatively large step-sizes are used (see
Fig. 3(b)).

(a)
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Figure 1: Simulations of the model (8) using NFD
method with various initial conditions and R̃ =
0.8750 < 1 (μ0 = 0.04): (a) The number of infected
birds; (b) The number of infected humans.

6 Conclusions

In this paper, we propose a numerical scheme to solve
a SIR–SI model for the transmission of avian in-
fluenz which is interesting to understand the evolu-
tion of this disease as well as other diseases of simi-
lar characteristics. Proposed method is analyzed and
tested in several numerical simulations. It is found
that the NFD method gives results that converged
(monotonically) to the true steady-states for any time-
step used unlike the RK4 method which fails when
certain time-step is used. The huge advantage which
the method NFD has over the RK4 method is that it
may be used with an arbitrarily large value of the time
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Figure 2: Simulations of the model (8) using NFD
method with various initial conditions and R̃ =
76.6500 > 1 (μ0 = 0.0004): (a) The number of in-
fected birds; (b) The number of infected humans.
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Figure 3: The profil of infected human using the
methods NFD and RK4 with 	 = 12 and μ0 = 0.04
(R̃ > 1): (a) The method NFD, (b) The RK4 method.

step, thus making it more economical to use when in-
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tegrating over long time periods to reach steady states.
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